
Evaluation of Component-Based  
Reconfigurable Machine Controllers 

 
 

Sri Kolla  
Department of Electrical Engineering, Bowling Green State University, USA 
 
John Michaloski and William Rippey 
National Institute of Standards and Technology, Gaithersburg, MD, USA 

 
 

ABSTRACT 
 

The lack of interoperability and integration standards is severely hindering 
manufacturing productivity. To address this problem, a General Motion 
Control (GMC) Testbed has been developed at National Institute of 
Standards and Technology (NIST) with one of its goals to validate the 
Open Modular Architecture Controller (OMAC) interface specification for 
reconfigurable, plug-and-play open-architecture controllers. The GMC 
validation testbed was built using Microsoft Component Object Model 
(COM) components. This paper will review software programming issues 
and the use of Microsoft COM in the development of machine control 
components. Strategies and tests of COM programming for a controller 
will be discussed.  
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INTRODUCTION 

The increasing pressures on manufacturers to improve time to market and integrate the 
shop floor directly into the enterprise business systems places a premium on better 
techniques to design, integrate, test, evaluate, and later reconfigure control systems. Lost 
time and money in manufacturing systems integration, testing, and installation is 
profound. The Manufacturing Execution Systems Association (MESA) estimates that for 
every dollar spent on software, an additional $4 is required to install and integrate it. [3] 
The 1999 Robotics Industry Forum estimates that integration and deployment of robot 
systems typically cost 3 to 5 times the cost of the robot itself. The root of the problem can 
be traced to the lack of interoperability. NIST has long been committed to helping 
industry improve interoperability and systems’ integration through standards 
participation. [4,6]  In the area of motion-based control systems, the NIST Intelligent 
Systems Division has developed a General Motion Control (GMC) testbed to conduct a 
variety of development, safety, integration and performance evaluations. One area of 
research within the NIST GMC testbed is to assess the efficacy of component-based 
technology in controller design and development. This paper will discuss preliminary 
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results from the validation of the Open Architecture Modular Controller (OMAC) 
Application Programming Interfaces (API) component-based specification. The OMAC 
API, developed under the auspices of the OMAC Users Group [9], tackles the more 
complex open architecture controller requirements –plug-and-play, reconfigurability, 
extensibility, and reusability – by means of component-based technology. The paper will 
start by reviewing the OMAC API. A brief overview of the NIST GMC testbed hardware 
and software will be given. The Microsoft Component Object Model (COM) and related 
software development strategies will be discussed. Empirical observations concerning 
COM and OMAC API control component development will be given (see [1] for 
observations on effective COM development in general). 

OMAC API Overview 

The OMAC API specification contains machine control APIs, as well as a formal API to 
address the integration and collaboration of components. Figure 1 shows a Unified 
Modeling Language (UML) [10] hierarchy diagram of the OMAC API. OMAC API uses 
several terms to differentiate component concepts. The term “Component” applies to any 
reusable piece of software, while the term “Module” refers to a aggregating of 
components. The term “Task” is applied to a type of component that encapsulates 
programmable behavior containing a series of steps, running to completion that may be 
rerun.  

OMAC API modules shown in Figure 1 include the following. Axis handles servo 
motion control. Axis Group coordinates multiple axes motions. Task Coordinator handles 
sequencing of operations. Input-Output (IO) Device manages communication between the 
physical hardware device and IO software, and is responsible for managing a group of IO 
points. Human Machine Interface (HMI) coordinates human interaction with a controller. 
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 Figure 1. OMAC API UML Abstraction Hierarchy 



Discrete Logic handles IO programming. Domain Coordinator creates OMAC 
components for a single address space. System Coordinator manages a set of Domain 
Coordinators. OMAC API components shown in Figure 1 include the following. Control 
Law calculates servo loop setpoints. IO Point provides typed (e.g., long, scaled) reading 
or writing of physical or logical data points. Kinematics Model handles geometrical 
properties of motion. Process Model integrates sensor data and control.  

A major goal of the OMAC API is to leverage mainstream, high-volume, component 
technology. Hence, the current OMAC API specification is defined using Microsoft 
Interface Definition Language (MIDL) – the basis for COM. Adoption of the OMAC API 
specification would allow control vendors to supply standard components that machine 
suppliers could then easily configure and integrate to build machine control systems. 
Additionally, end-users would then be able to easily reconfigure these systems based on 
evolving system requirements. The OMAC API also contains introspective component 
properties to improve developer maintenance and diagnostics, plus allowing components 
to be used at design time in an Integrated Development Environment (IDE) as well as 
runtime.  

 
NIST GMC TESTBED SYSTEM DESIGN 

To develop a motion control testbed representative of a broad range of factory floor 
operations, the testbed focus was on automation markets eager for advances in 
component integration and interoperability. The focus was on packaging applications 
since they require high accuracy, high-speed regulation, and rapid changeover between 
product lines. The packaging industry is undergoing a design transformation, moving 
from mechanical control solutions using gears, cams, and chains, to electronic solutions 
using servomotors and software control. 

Hardware 

The NIST GMC testbed includes a variety of equipment found in packaging and other 
manufacturing factory floor operations. The testbed was built from commercial-off-the-
shelf automation equipment and general-purpose computers. Networked IO was a testbed 
requirement as it lowers costs from common wiring and communication protocol. The 
initial NIST GMC testbed packaging application was to control a bottle conveyor and 
perform various quality checks as the bottles moved along the conveyor. DeviceNet was 
selected as the network communication protocol, since it is an international device-level 
IO standard (e.g., IEC 62026/3) with a wide-variety of supporting equipment. 

The testbed system design includes two positioning servo drives with a DeviceNet 
interface for digital positioning control of brushless servomotors, used to power the 
conveyor chain. The servomotors provide higher precision control of chain speed. The 
DeviceNet IO equipment in the testbed includes: 1) a general-purpose modular discrete 
IO with 4 inputs and 4 outputs, 2) several binary IO modules and wiring blocks, and 3) a 
4 color stack light IO module to color code for displaying machine status. IO modules of 
different personalities interlock so that the communications adapter can access device 
information and make it available over DeviceNet. These IO modules were wired to 
accept simple contact switches as well as 3-wire electronic proximity and photoelectric 
sensors.  

 



NIST GMC TESTBED SOFTWARE DESIGN 

The thrust of the NIST GMC testbed was to evaluate the development, integration and 
maintenance performance using Microsoft COM. [7] This emphasis on COM resulted in 
an initial soft-real-time development platform based on Windows NT/2000. Components 
developed under Windows NT/2000 can in theory run under Window/CE, which is a 
hard-real-time operating system. Real-time control issues using Microsoft operating 
systems are addressed in [2,11]. The suitability of COM for motion control, given its 
inherent complexity and original design for business applications, were a primary 
research issue. Issues such as ease of programmability, diagnostic capabilities, and 
overall performance were also considered. 

Microsoft COM 

COM is a component technology that allows objects to interact within a single process 
or across process and machine boundaries. The only way to manipulate the data 
associated with an COM object is through an interface on the object. The NIST GMC 
testbed developed a suite of COM components based on the OMAC API specification, 
while varying aspects of the OMAC API specification that were substandard. The in-
house NIST GMC components were developed using Microsoft Visual C++, which 
includes many programming tools to simplify COM component development. Using 
programming environments other than Visual C++ to build COM components is possible; 
but no consideration was given to this aspect during the initial testbed development. In 
addition, most in-house COM components were “local”, where the COM interface 
implicitly supplies a thin layer of abstraction on top of a Dynamically Linked Library and 
requires little overhead or performance penalty after loading. 

One benefit of COM is the ability to determine supported and optional functionality 
through the QueryInterface method required of all COM components. The use of 
aggregated component interfaces coupled with the success or failure of the 
QueryInterface method on these interfaces provides a systematic approach to determining 
if an interface is supported. This capability determination meant that not all functionality 
was required of each component. We did require that each component support a common 
OMAC interface to allow naming, state, diagnostics, and configuration information to be 
available from all components. One major disadvantage of COM is that the lifetime of a 
component is determined by reference counting with a component being deleted when its 
reference count is zero. Adhering to the COM pointer reference paradigm is daunting; 
with mismanaged pointer management potentially causing components to suddenly 
“disappear”. 

During development, there was a concern that COM would be too memory-intensive 
since some motion programs could contain thousands of very small trajectory increments. 
We ran a memory test to see how many motion segment COM components, each 
corresponding to a step in a program, could be created before having the PC run out of 
virtual memory. The test created more than 23 thousand COM motion segments of 
roughly 2K in size on a Windows NT platform with 520M of virtual memory before 
failing. The result is approximate wherein results would vary based on program size and 
amount of system virtual memory. More troubling was the infamous PC blue screen of 
death that resulted upon exhausting virtual memory. 



Figure 2 FSM Diagnostic Playback 

State Machine Logic 

Finite State Machine (FSM) control logic is pervasive throughout the OMAC API. The 
OMAC API defines two fundamental FSM – a lifecycle “OMAC” FSM and a “Task” 
FSM. The lifecycle FSM is used to deploy, publish, connect, initialize and shutdown 
components during the lifetime of the component.  The Task FSM is a “lighter” state 
logic for running programs 
and individual program 
steps. The two basic FSMs 
are then specialized on a per 
module/component/task 
basis. To handle the FSM 
logic, we developed a C++ 
FSM class library that could 
handle state nesting and 
other advanced state 
machine logic. [5] 

The benefits of using FSM 
logic within the NIST GMC 
testbed were twofold: 
improved logical program 
correctness and eased 
traceability of program 
logic. FSM flags can be set 
within a component to catch 
program logic errors by 
“breakpointing” at any 
deviation from the accepted 
FSM logic, such as 
unexpected events or invalid 
state transition. Hardware faults or other system errors also can be pinpointed and traced 
to a single step within a FSM. Figure 2 illustrates the NIST GMC testbed controller after 
an amp fault causes the followingPosition state to transition to a fault state. The 
arrow (added for this paper) shows the Amp Fault IO point as 1, indicating a fault. The 
NIST GMC testbed controller saves snapshots of the FSM as well as data dumps at each 
major state transition so that the sequencing buttons under the FSM display allow 
forward and reverse playback to “reenact” the error.  

Employing system-wide FSM logic is especially appealing to the manufacturing 
industry for faster maintenance and diagnostic troubleshooting. The importance of the 
FSM benefits of correctness and traceability cannot be understated because integrating 
diagnostic tools in logic control is considered the number one challenge for 
manufacturing systems. [8] The primary drawback to strict FSM compliance is agreeing 
on acceptable component state logic that is neither trivial nor excessively complicated. 

Template Component Development 

Component development for motion controllers is laborious, as most components are 
required to support a full life-cycle of component functionality in addition to its own 



control functionality. The NIST GMC testbed employed a number of C++ component 
templates to accelerate the coding. The C++ template is a complex, but powerful 
programming mechanism that streamlines repetitive programming aspects. Microsoft 
aggressively uses templates within its Active Template Language (ATL) as part of Visual 
C++ that is one of the primary COM programming development tools. ATL and the use 
of wizards simplify development by automating many of the multifaceted interfaces 
required of a COM component. ATL is extremely lightweight in that only elements that 
are required in an application are included, not the complete development library - as is 
case when using the Microsoft Foundation Class (MFC) Library.  

One shortcoming to ATL is that it does not implement COM inheritance without the 
use of “chaining” of interfaces. Although helpful, chained COM objects have difficulty in 
sharing member variables or common interfaces. We developed C++ inheritance 
interface templates, but this required a major learning curve to overcome the tricks ATL 
uses in instantiating COM objects.  
   
SUMMARY 

This paper gives an overview the NIST GMC testbed effort to validate the OMAC API 
specification. We have some empirical observations concerning this effort. We found the 
development of common C++ templates to implement COM control components took 
months to develop, but once available, speeded development and improved component 
reliability. We found FSM traceability invaluable in solving the number one challenge in 
manufacturing systems – better program logic diagnostics. The OMAC API validation is 
still preliminary and there are more tests to run. Ultimately, we would like to test 
communication and functionality aspects of components with a rigorous set of simulated 
errors and increasing processor loads to see at what point breakdowns occur.  
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